lalillll
contestada

A science teacher has a supply of 20% saline solution and a supply of 50% saline solution. How much of each solution should the teacher mix together to get 60 mL of 28% saline solution for an experiment? (1 point)

A) 16 mL of the 20% solution and 44 mL of the 50% solution

B) 44 mL of the 20% solution and 16 mL of the 50% solution

C) 16 mL of the 20% solution and 16 mL of the 50% solution

D) 44 mL of the 20% solution and 44 mL of the 50% solutionhow many solutions does the system of equations have y-6x=-3 and 4y-24x=-16

Respuesta :

gmany

Answer:

B)

Explanation:

[tex]\text{Let}\\\\x-\text{a volume of}\ 20\%\ \text{saline solution}\\\\y-\text{a volume of }\ 50\%\ \text{saline solution}\\\\p\%=\dfrac{p}{100}\\\\20\%=\dfrac{20}{100}=\dfrac{2}{10}=0.2\\\\50\%=\dfrac{50}{100}=\dfrac{5}{10}=0.5\\\\0.2x-\text{a volume of salt in }\ 20\%\ \text{saline solution}\\0.5y-\text{a volume of salt in }\ 50\%\ \text{saline solution}\\\\60mL-\text{a volume of}\ 28\%\ \text{saline solution}\\\\28\%=\dfrac{28}{100}=0.28[/tex]

[tex]0.28\cdot60mL=16.8mL-\text{a volume of salt in }\ 28\%\ \text{saline solution}\\\\\text{Equations}\\\\(1)\qquad x+y=60\\(2)\qquad0.2x+0.5y=16.8[/tex]

[tex]\left\{\begin{array}{ccc}x+y=60\\0.2x+0.5y=168&\text{multiply both sides by 10}\end{array}\right\\\left\{\begin{array}{ccc}x+y=60&\text{multiply both sides by (-2)}\\2x+5y=168}\end{array}\right\\\underline{+\left\{\begin{array}{ccc}-2x-2y=-120\\2x+5y=168}\end{array}\right}\qquad\text{add both sides of the equations}\\.\qquad3y=48\qquad\text{divide both sides by 3}\\.\qquad y=16[/tex]

[tex]\text{Put the value of}\ y\ \text{to the first equation:}\\\\x+16=60\qquad\text{subtract 16 from both sides}\\x=44[/tex]

B) 44 mL of the 20% solution and 16 mL of the 50% solution.

  • The calculation is as follows:

Here we used "Mixture Allegation" to determine the quantity of each solution:

Ist type of solution                           II nd type of solution

     20%                                                       50%

                                   28%

--------------------------------------------------------------------------------------

50%-28%                        :                         28%-20%

22%                               :                            8%

 11                                  :                             4

There is total quantity of 60 ml of solution.

So, Quantity of 20% solution in the mixture is provided by

[tex]\frac{11}{15} \times 60 = 11\times 4 = 44 ml[/tex]

And, Quantity of 50% solution in the mixture is provided by

[tex]\frac{4}{15} \times 60 = 11\times 4 = 16 ml[/tex]

Learn more: https://brainly.com/question/5101300?referrer=searchResults