Answer:
If Θ = 1 rad, then r ≤ s
If s = 1/2r, then 2Θ = 1
If s/(2r)=1, then Θ = 2
Step-by-step explanation:
we know that
The arc length s is equal to
[tex]s=r\theta[/tex]
where
r is the radius
[tex]\theta[/tex] is the central angle in radians
Verify each statement
case 1) If Θ = 2 rad, then r > s
The statement is false
Because
For Θ = 2 rad
substitute
[tex]s=r(2)\\s=2r[/tex]
so
[tex]s>r[/tex]
case 2) If Θ = 1 rad, then r ≤ s
The statement is true
Because
For Θ = 1 rad
substitute
[tex]s=r(1)[/tex]
[tex]s=r[/tex]
so
[tex]r\leq s[/tex] ---> is true
case 3) If s = 1/2r, then 2Θ = 1
The statement is true
Because
For s=1/2r
substitute
[tex]\frac{1}{2}r=r\theta[/tex]
[tex]\theta=\frac{1}{2}[/tex]
[tex]2\theta=1[/tex]
case 4) If s/2r=1, then Θ = 2
The statement is true
Because
For Θ = 2
substitute
[tex]s=r(2)\\\\\frac{s}{2r}=1[/tex]