Respuesta :

Answer:

According to AD=BC So AC=BD

Step-by-step explanation:

AD = BC and angle ADC = angle BCD

we have to prove AC = BD

let's see ∆ADC and ∆BCD

AD = BC [ given ]

angle ADC = angle BCD [ given ]

CD = CD

from S - A - S

∆ADC congruence ∆BCD

By addition property, equal areas subtracted from congruent triangles, form two other congruent triangles

[tex]\overline {DE}[/tex] ≅ [tex]\overline {CE}[/tex] by Congruent Parts of Congruent Triangles are Congruent, (CPCTC)

The reason the above proof is correct is given as follows;

The given parameters are;

[tex]\overline {AD}[/tex] ≅ [tex]\overline {BC}[/tex] and ∠BCD ≅ ∠ADC

Required:

Prove: [tex]\overline {DE}[/tex] ≅ [tex]\overline {CE}[/tex]

A two column proof is presented as follows;

Statement   [tex]{}[/tex]                                Reason

[tex]\overline {AD}[/tex] ≅ [tex]\overline {BC}[/tex]    [tex]{}[/tex]                               Given

∠BCD ≅ ∠ADC    [tex]{}[/tex]                      Given

[tex]\overline {DC}[/tex] ≅ [tex]\overline {DC}[/tex]   [tex]{}[/tex]                                Reflective property

ΔADC ≅ ΔBDC   [tex]{}[/tex]                       SAS rule of congruency

[tex]\overline {AB}[/tex] ≅ [tex]\overline {AB}[/tex]   [tex]{}[/tex]                                Reflective property

ΔABD ≅ ΔABC   [tex]{}[/tex]                       SSS rule of congruency

ΔABD = ΔABE + ΔAED  [tex]{}[/tex]           Addition property

ΔABC = ΔABE + ΔBEC  [tex]{}[/tex]           Addition property

Therefore;

ΔAED = ΔBEC   [tex]{}[/tex]                         By converse of addition property

ΔAED ≅ ΔBEC    [tex]{}[/tex]                       Definition of congruency

[tex]\overline {DE}[/tex] ≅ [tex]\overline {CE}[/tex]  [tex]{}[/tex]                                 By CPCTC

The acronyms used in the proof are;

SAS: Side Angle Side rule of congruency

CPCTC: Congruent Parts of Congruent Triangles are Congruent

SSS: Side-Side-Side rule of congruency

Learn more about CPCTC here:

https://brainly.com/question/2166368