Respuesta :

Answer:

Option B. {x | x < -12 or x > -6}

Step-by-step explanation:

we have

[tex]-\frac{2}{3}x>8[/tex] ---> inequality A

Solve for x

Multiply by -3/2 both sides

Remember that when you multiply or divide both sides of an inequality by a negative number, you must reverse the inequality symbol

so

[tex]x < (-\frac{3}{2})8[/tex]

[tex]x < -12[/tex]

The solution of the inequality A is the interval (-∞,-12)

[tex]-\frac{2}{3}x<4[/tex] ----> inequality B

Solve for x

Multiply by -3/2 both sides

Remember that when you multiply or divide both sides of an inequality by a negative number, you must reverse the inequality symbol

so

[tex]x > (-\frac{3}{2})4[/tex]

[tex]x >-6[/tex]

The solution of the inequality B is the interval (-6,∞)

therefore

The solution of the system

[tex]-\frac{2}{3}x>8[/tex]  or  [tex]-\frac{2}{3}x<4[/tex]  is equal to

(-∞,-12) ∪ (-6,∞)

{x | x < -12 or x > -6}