Respuesta :

Answer: B) 5x^4

==============================================

Work Shown:

125 = 5*5*5 = (5)^3

x^12 = (x^4)*(x^4)*(x^4) = (x^4)^3

125x^12 = (5x^4)^3

[tex]\large \sqrt[3]{125x^{12}} = \left(125x^{12}\right)^{1/3}[/tex]

[tex]\large \sqrt[3]{125x^{12}} = \left((5x^4)^3\right)^{1/3}[/tex]

[tex]\large \sqrt[3]{125x^{12}} = (5x^4)^{3*(1/3)}[/tex]

[tex]\large \sqrt[3]{125x^{12}} = (5x^4)^{1}[/tex]

[tex]\large \sqrt[3]{125x^{12}} = \textbf{5x}^{\textbf{4}}[/tex]

Answer:

Step-by-step explanation:

[tex]125=5*5*5=5^{3}\\\\\ \sqrt[3]{125x^{12}}=\sqrt[3]{125*x^{4*3}}\\\\=\sqrt[3]{5^{3}*(x^{4})^{3}}=5*x^{4}=5x^{4}[/tex]