Answer:
The length of the rectangle is[tex](4+7y^3)[/tex] and its width is[tex]3y^2[/tex]
Step-by-step explanation:
Given:
The Area of the rectangle =[tex]12y^2+21y^5[/tex].
Width is the greatest common factor of [tex]12y^2[/tex] and[tex]21y^5[/tex]
To Find:
The length and width of the rectangle = ?
Solution:
Step 1: Finding the greatest common factor of [tex]12y^2[/tex]and[tex]21y^5[/tex]
[tex]12 y^2[/tex]= 2 x 3 x 3 x y x y
[tex]21y^5[/tex] = 3 x 7 x y x y x y x y x y
Thus the greatest common factor is [tex]3y^2[/tex] which is the width
Step 2: Finding the length and width
The area of the rectangle = length x breath
width x length= [tex]12y^2+21y^5.[/tex]
Taking[tex]3y^2[/tex] commonly from each term, we get
width x length= [tex](3y^2)(4 + 7y^3)[/tex]