Respuesta :

The summation symbol means we use the variable i in the equation from the given range. In this case, we are given with the equation 3 i - 15 and i ranges from 2 to 7. The summation using simply the calculator is equal to -9. The answer to this problem is -9.

Answer:

[tex]\sum _{i=2}^73i-15=-9[/tex]

Step-by-step explanation:

Given : [tex]\sum _{i=2}^73i-15[/tex]

We have to evaluate the given summation.

Consider [tex]\sum _{i=2}^73i-15[/tex]

using, we have,

[tex]\sum _{k=m}^n\:=\:\sum _{k=1}^n\:-\:\sum _{k=1}^{m-1}[/tex]

[tex]=\sum _{i=1}^73i-15-\sum _{i=1}^13i-15[/tex]      ..............(1)

Consider, [tex]\sum _{i=1}^73i-15[/tex]

Apply sum rule,

[tex]\quad \sum a_n+b_n=\sum a_n+\sum b_n[/tex] , we have,

[tex]=\sum _{i=1}^73i-\sum _{i=1}^715[/tex]

Now, first consider, [tex]\sum _{i=1}^73i[/tex]

Apply constant multiplication rule,[tex]\quad \sum c\cdot a_n=c\cdot \sum a_n[/tex] we have,

[tex]=3\cdot \sum \:_{i=1}^7i[/tex]

[tex]=3\cdot \:28\\\\=84[/tex]

Also, [tex]\sum _{i=1}^715=105[/tex]

Thus, [tex]\sum _{i=1}^73i-15=84-105=-21[/tex]

Similarly, [tex]\sum _{i=1}^13i-15=-12[/tex]

Substitute in (1) , we have,

Thus, [tex]\sum _{i=2}^73i-15=-21-(-12)=-21+12=-9[/tex]

Thus, [tex]\sum _{i=2}^73i-15=-9[/tex]