Respuesta :
Answer:
[tex](4g+2)(16g^2-8g+4)[/tex]
Step-by-step explanation:
The given expression is [tex]64g^3+8[/tex]
Let us write this expression in perfect cube form
[tex](4g)^3+(2)^3[/tex]
Use the formula of sum of cubes which is given by
[tex]a^3+b^3=(a+b)(a^2-ab+b)^2[/tex]
Here, a= 4g, b = 2
[tex](4g)^3+(2)^3= (4g+2)((4g)^2-(4g)(2)+2^2\\\\=(4g+2)(16g^2-8g+4)[/tex]
Thus, the factored form of the given expression is
[tex](4g+2)(16g^2-8g+4)[/tex]