Respuesta :

The answer is (4g+2) 16g2 - 8g +4)

Answer:

[tex](4g+2)(16g^2-8g+4)[/tex]

Step-by-step explanation:

The given expression is [tex]64g^3+8[/tex]

Let us write this expression in perfect cube form

[tex](4g)^3+(2)^3[/tex]

Use the formula of sum of cubes which is given by

[tex]a^3+b^3=(a+b)(a^2-ab+b)^2[/tex]

Here, a= 4g, b = 2

[tex](4g)^3+(2)^3= (4g+2)((4g)^2-(4g)(2)+2^2\\\\=(4g+2)(16g^2-8g+4)[/tex]

Thus, the factored form of the given expression is

[tex](4g+2)(16g^2-8g+4)[/tex]