Respuesta :
r α p/(st)
r = kp/(st)
Where k = constant of proportionality
r = 18, p = 12, t = 2 , s = 1/6
r = kp/(st)
18 = k*12/((1/6)*2)
18 = 12k /(1/3)
18 = 12*3*k
18 = 36k
18/36 = k
1/2 = k
k = 1/2
Constant of variation = 1/2 = 0.5
r = kp/(st)
Where k = constant of proportionality
r = 18, p = 12, t = 2 , s = 1/6
r = kp/(st)
18 = k*12/((1/6)*2)
18 = 12k /(1/3)
18 = 12*3*k
18 = 36k
18/36 = k
1/2 = k
k = 1/2
Constant of variation = 1/2 = 0.5
r[tex] \alpha \frac{p}{st} [/tex]
r=k[tex] \frac{p}{st} [/tex]
18=12[tex] \frac{k}{1/6*2} [/tex]
18=12*3k
k=[tex] \frac{1}{2} [/tex]
r=k[tex] \frac{p}{st} [/tex]
18=12[tex] \frac{k}{1/6*2} [/tex]
18=12*3k
k=[tex] \frac{1}{2} [/tex]