Respuesta :
Answer:
Machine A $ 93,014.34
Machine B $ 82,681.80
Machine C $ 87.545,44
Machine B would be the best option as their net worth is lower.
Explanation:
We calcualte the present valeu of the maintenance cost like they were annuities. Then, we add the cost for the machine. in the case of machine C we will discount the salvage value
we will pick the lower of the cost.
Machine A
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 9,000.00
time 8
rate 0.1
[tex]9000 \times \frac{1-(1+0.1)^{-8} }{0.1} = PV\\[/tex]
PV $48,014.3358
+ cost 45,000
net worth $ 93,014.34
machine B
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 9,500.00
time 8
rate 0.1
[tex]9500 \times \frac{1-(1+0.1)^{-8} }{0.1} = PV\\[/tex]
PV $50,681.7989
+ 32,000 cost
net worth: 82,681.80
machine C
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 7,200.00
time 8
rate 0.1
[tex]7200 \times \frac{1-(1+0.1)^{-8} }{0.1} = PV\\[/tex]
PV $38,411.4686
salvage value
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $4,000.0000
time 8.00
rate 0.10000
[tex]\frac{4000}{(1 + 0.1)^{8} } = PV[/tex]
PV 1,866.0295
cost: 51,000
net worth: 51,000 + 38,411.47 - 1,866.03 = 87.545,44