Answer:
Ws=8.75 Watts
Explanation:
As per fig. of prob 02.061, it is clear that R5 and R4 are in parallel, its equivalent Resistance will be:
[tex]\frac{1}{Req45}=\frac{1}{R4}+\frac{1}{R5}[/tex]
[tex]\frac{1}{Req45}=\frac{1}{5}+\frac{1}{4}[/tex]
[tex]\frac{1}{Req45}=0.2+0.25=0.45\\ Req45=2.22[/tex]
Now, this equivalent Req45 is in series with R3, therefore:
[tex]Req345=R3+Req45\\Req345=4+2.22\\Req345=6.22[/tex]
This Req345 is in parallel with R2, i.e
[tex]Req2345=(R2^{-1}+Req345^{-1} )^{-1}\\ Req2345=(4^{-1}+6.22^{-1} )^{-1} \\Req2345=2.43[/tex]
Now this gets in series with R1:
[tex]Req12345=R1+Req2345\\Req12345=9+2.43\\Req12345=11.43[/tex]
Now, the power delivered Ws is:
[tex]Ws=Vs*I=\frac{Vs^{2}}{Req} \\Ws=\frac{10^{2} }{11.43} \\Ws=8.75 Watts[/tex]