Respuesta :
Answer:
a) [tex] P(X>65.7)[/tex]
b) [tex]P(X>65.7)=P(\frac{X-\mu}{\sigma}>\frac{65.7-\mu}{\sigma})=P(Z>\frac{65.7-77.7}{9.6})=P(z>-1.25)[/tex]
And we can find this probability using the complement rule:
[tex]P(z>-1.25)=1-P(z<-1.25)=1-0.106=0.894[/tex]
c) [tex]P(X>86.7)=P(\frac{X-\mu}{\sigma}>\frac{86.7-\mu}{\sigma})=P(Z>\frac{86.7-77.7}{9.6})=P(z>0.9375)[/tex]
And we can find this probability using the complement rule:
[tex]P(z>0.9375)=1-P(z<0.9375)=1-0.826=0.174[/tex]
d) [tex]P(65.7<X<86.7)=P(\frac{65.7-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{86.7-\mu}{\sigma})=P(\frac{65.7-77.7}{9.6}<Z<\frac{86.7-77.7}{9.6})=P(-1.25<z<0.9375)[/tex]
And we can find this probability with this difference:
[tex]P(-1.25<z<0.9375)=P(z<0.9375)-P(z<-1.25)[/tex]
And in order to find these probabilities we can use tables for the normal standard distribution, excel or a calculator.
[tex]P(-1.25<z<0.9375)=P(z<0.9375)-P(z<-1.25)=0.826-0.106=0.720[/tex]
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the scores for the MAT112 of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(77.7,9.6)[/tex]
Where [tex]\mu=77.7[/tex] and [tex]\sigma=9.6[/tex]
Part a
We can write the event ''a score over 65.7'' like this:
[tex] P(X>65.7)[/tex]
Part b
We are interested on this probability
[tex]P(X>65.7)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(X>65.7)=P(\frac{X-\mu}{\sigma}>\frac{65.7-\mu}{\sigma})=P(Z>\frac{65.7-77.7}{9.6})=P(z>-1.25)[/tex]
And we can find this probability using the complement rule:
[tex]P(z>-1.25)=1-P(z<-1.25)=1-0.106=0.894[/tex]
Part
[tex]P(X>86.7)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(X>86.7)=P(\frac{X-\mu}{\sigma}>\frac{86.7-\mu}{\sigma})=P(Z>\frac{86.7-77.7}{9.6})=P(z>0.9375)[/tex]
And we can find this probability using the complement rule:
[tex]P(z>0.9375)=1-P(z<0.9375)=1-0.826=0.174[/tex]
Part d
[tex]P(65.7<X<86.7)=P(\frac{65.7-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{86.7-\mu}{\sigma})=P(\frac{65.7-77.7}{9.6}<Z<\frac{86.7-77.7}{9.6})=P(-1.25<z<0.9375)[/tex]
And we can find this probability with this difference:
[tex]P(-1.25<z<0.9375)=P(z<0.9375)-P(z<-1.25)[/tex]
And in order to find these probabilities we can use tables for the normal standard distribution, excel or a calculator.
[tex]P(-1.25<z<0.9375)=P(z<0.9375)-P(z<-1.25)=0.826-0.106=0.720[/tex]