Respuesta :

Answer:

The detailed process of simplification is :

Step-by-step explanation:

[tex]\frac{24x^{5} - 8x^{4} + 12x^{3} - 4x^{2} }{4x^{2} }[/tex]

= [tex]\frac{24x^{5} }{4x^{2} }[/tex] - [tex]\frac{8x^{4} }{4x^{2} }[/tex] + [tex]\frac{12x^{3} }{4x^{2} }[/tex] - [tex]\frac{4x^{2} }{4x^{2} }[/tex] ..........................separate the terms

= 6[tex]x^{5-2}[/tex] - 2[tex]x^{4-2}[/tex] + 3[tex]x^{3-2}[/tex] - 1 ................ subtract the power of x from denominator

= 6[tex]x^{3}[/tex] - 2[tex]x^{2}[/tex] + 3[tex]x[/tex] -1

= 2[tex]x^{2}[/tex]( 3[tex]x[/tex] -1 ) +  (3[tex]x[/tex] -1 )................................... Take  (3[tex]x[/tex] -1 ) common in (6[tex]x^{3}[/tex] - 2[tex]x^{2}[/tex])

=  (3[tex]x[/tex] -1 ) (2[tex]x^{2}[/tex] +1) .......................................Take  (3[tex]x[/tex] -1 ) common in whole equation