Answer:
The temperature change per compression stroke is 32.48°.
Explanation:
Given that,
Angular frequency = 150 rpm
Stroke = 2.00 mol
Initial temperature = 390 K
Supplied power = -7.9 kW
Rate of heat = -1.1 kW
We need to calculate the time for compressor
Using formula of compression
[tex]\terxt{time for compression}=\text{time for half revolution}[/tex]
[tex]\terxt{time for compression}=\dfrac{1}{2}\times T[/tex]
[tex]\terxt{time for compression}=\dfrac{1}{2}\times \dfrac{1}{f}[/tex]
Put the value into the formula
[tex]\terxt{time for compression}=\dfrac{1}{2}\times \dfrac{1}{150}\times60[/tex]
[tex]\terxt{time for compression}=0.2\ sec[/tex]
We need to calculate the rate of internal energy
Using first law of thermodynamics
[tex]U=Q-W[/tex]
[tex]\dfrac{\Delta U}{\Delta t}=\dfrac{\Delta Q}{\Delta t}-\dfrac{\Delta W}{\Delta t}[/tex]
Put the value into the formula
[tex]\dfrac{\Delta U}{\Delta t}=(-1.1)-(7.9)[/tex]
[tex]\dfrac{\Delta U}{\Delta t}=6.8\ kW[/tex]
We need to calculate the temperature change per compression stroke
Using formula of rate of internal energy
[tex]\dfrac{\Delta U}{\Delta t}=\dfrac{nc_{v}\Delta \theta}{\Delta t}[/tex]
[tex]\Delta\theta=\dfrac{\Delta U}{\Delta t}\times\dfrac{\Delta t}{n\times c_{c}}[/tex]
Put the value into the formula
[tex]\Delta \theta=6.8\times10^{3}\dfrac{0.2}{2.0\times20.93}[/tex]
[tex]\Delta\theta=32.48^{\circ}[/tex]
Hence, The temperature change per compression stroke is 32.48°.