Respuesta :
Answer:
The half-life would be 1372 seconds.
The concentration remains after 2 hours is 0.000177 M.
Explanation:
Given the initial concentration [tex](A_0)[/tex] of was [tex]0.00670\ M[/tex].
And the rate constant [tex](k)[/tex] is [tex]5.05\times 10^{-4}\ s^{-1}[/tex]
We need to calculate the half-life and the concentration remains [tex](A)[/tex] after 2 hours.
First, we will use the formula of half-life of the first order reaction.
[tex]t_{\frac{1}{2} }=\frac{0.693}{K}\\\\t_{\frac{1}{2} }=\frac{0.693}{5.05\times 10^{-4}}\\\\t_{\frac{1}{2} }=1372\ seconds[/tex]
So, half-life would be 1372 seconds.
Now, we will find its concentration after 2 hours. That means [tex]t=2\times60\times60=7200\ seconds[/tex]
Use the equation
[tex]A=A_oe^{-kt}\\A=0.00670\times e^{-5.05\times10^{-4}\times7200}\\A=0.00670\times e^{-3.636}\\A=0.00670\times0.026\\A=0.000177\ M[/tex]
So, the concentration remains after 2 hours is 0.000177 M.
The half-life of cyclopropane at this temperature [tex]\mathbf{1.372 \times 10^3\ s}[/tex].The concentration of cyclopropane that remains after 2.00 hours is [tex]\mathbf{1.765 \times 10^{-4} \ M}[/tex]
Considering the first-order reaction described by the equation, the half-life for a first-order reaction can be computed as:
[tex]\mathbf{t_{1/2} = \dfrac{0.693}{k} }[/tex]
where;
- rate constant K = 5.05 × 10⁻⁴ s⁻¹
∴
[tex]\mathbf{t_{1/2} = \dfrac{0.693}{5.05 \times 10^{-4} \ s^{-1}} }[/tex]
[tex]\mathbf{t_{1/2} =0.1372 \times 10^4\ s}[/tex]
[tex]\mathbf{t_{1/2} =1.372 \times 10^3\ s}[/tex]
For a first-order reaction, the integrated rate law can be used to determine the concentration of cyclopropane that remains after 2.00 hours:
[tex]\mathbf{In [A]_t = -kt + In[A]_o}[/tex]
where;
- [tex]\mathbf{[A]_t}[/tex] = concentration at time (t)
- [tex]\mathbf{[A]_o}[/tex] = initial concentration
When the time (t) = 2.00 hours
=( 2 × 60 × 60) seconds
= 7200 s
∴
[tex]\mathbf{In [A]_t = -(5.05 \times 10^{-4} \ s^{-1} \times 7200 s) + In(0.00670 \ M)}[/tex]
[tex]\mathbf{In [A]_t = -3.636 -5.006 }[/tex]
[tex]\mathbf{In [A]_t =-8.642 \ M }[/tex]
[tex]\mathbf{[A]_t =1.765 \times 10^{-4} \ M}[/tex]
Therefore, we can conclude that the concentration of cyclopropane that remains after 2.00 hours is [tex]\mathbf{1.765 \times 10^{-4} \ M}[/tex]
Learn more about the first-order reaction here:
https://brainly.com/question/2877303?referrer=searchResults