Respuesta :
Answer:
A: P=Po(Vo/V)^y
B: W=5/2Po(Vo-Vo^7/5 Vi^-2/5)
C: ∆V= 5/2Po[Vo^7/5 Vi^-2/5 -Vo]
Explanation:
Attached is the solution


An analytical expression for P(V) is, [tex]P=\left ( \frac{V_{0} }{V} \right )^{7/5} P_{0[/tex].
Work done is, [tex]W=\frac{5}{2} P_{0}V_{0}^{7/5} }\left ( V_{0}^{-2/5} \right - V_{1}^{\frac{-2}{5} } } )[/tex].
Internal Energy Change is, [tex]\bigtriangleup U= \frac{5}{2} P_{0} \frac{P}\left ( V_{0}^{7/5 }V_{1}^{-7/5} \right- V_{0} )[/tex].
Given:-
The ratio of heat capacity is [tex]\dfrac{7}{5}[/tex]
Initial pressure=0
Initial Volume=0
Initial tempreture=0
Part A-
An analytic expression for p(V),
It is known for an adiabatic process that,
[tex]PV^{\gamma}[/tex]=constant
Pressure(p) at volume (V),
[tex]PV^{\gamma}\\[/tex]=[tex]P_{0} V_{0}^{\gamma}[/tex]
[tex]P=\left ( \frac{V_{0} }{V} \right )^{\gamma} P_{0[/tex]
at γ =7/5
[tex]P=\left ( \frac{V_{0} }{V} \right )^{7/5} P_{0[/tex]
This is the required expression for P(V)
Part B-
Work done, the formula for work done can be written as,
[tex]W=\int\limits^{V_{1}} _{V_ {0}} P dv[/tex]
[tex]W=P_{0}V_{0}^{7/5} } \int\limits^{V_{1}} _{V_ {0}} \frac{1}{V^{7/5} } dv[/tex]
[tex]W=P_{0}V_{0}^{7/5} } \frac{\left (V^{\frac{7}{5}-1 } \right )^{V_{1} }_{0} }{\frac{-7}{5} +1}[/tex]
[tex]W=P_{0}V_{0}^{7/5} } \frac{\left (V^{\frac{-2}{5} } \right )^{V_{1} }_{0} }{\frac{-2}{5} }[/tex]
[tex]W=\frac{5}{2} P_{0}V_{0}^{7/5} }\left ( V_{0}^{-2/5} \right - V_{1}^{\frac{-2}{5} } } )[/tex]
Above is the work done by the gas on the container during the expansion
Part C-
It is known as a change in internal energy can be given as-
[tex]\bigtriangleup U=nC_{v} \bigtriangleup T[/tex]
Now find change in tempreture first,
[tex]\bigtriangleup T=T-T_{0}[/tex]
[tex]\bigtriangleup T= \frac{P_{1} V_{1} }{nR } - \frac{P_{0} V_{0} }{nR }[/tex]
[tex]\bigtriangleup T= \frac{1}{nR}\left ( P_{1} V_{1} \right-P_{0} V_{0} )[/tex]
[tex]\bigtriangleup T= \frac{1}{nR}\left ( P_{0} V_{0}^{7/5 }V_{1}^{-7/5} \right-P_{0} V_{0} )[/tex]
[tex]\bigtriangleup T= \frac{P_{0}}{nR}\left ( V_{0}^{7/5 }V_{1}^{-7/5} \right- V_{0} )[/tex]
Now Internal Energy,
[tex]\bigtriangleup U= n\frac{5R}{2} \frac{P_{0}}{nR}\left ( V_{0}^{7/5 }V_{1}^{-7/5} \right- V_{0} )[/tex]
[tex]\bigtriangleup U= \frac{5}{2} P_{0} \frac{P}\left ( V_{0}^{7/5 }V_{1}^{-7/5} \right- V_{0} )[/tex]
This is the final change in energy
For more detail follow the link:
https://brainly.com/question/14926413