Answer:
a=3,b=0,c=5,d=-4/21
Step-by-step explanation:
The formule we use to get the slope is:
m = [tex]\frac{y2-y1}{x2-x1}[/tex]
a. (3,2);(4,x); m=1
[tex]\frac{x-2}{4-3}=1[/tex] → x= (1)(4-3)+2 → 3
b. (b,-1);(2,-2); m=-1/2
[tex]\frac{-2-(-1)}{2-b}=\frac{-1}{2}[/tex] → -1= ([tex]\frac{-1}{2}[/tex])(2-b) → [tex]\frac{-1}{\frac{-1}{2} }-2[/tex] → 0
c. (5,d);(9,2); m=-3/4
[tex]\frac{2-d}{9-5}=\frac{3}{4}[/tex] → d= ([tex]\frac{-3}{4}[/tex])(9-5)-2 → 5
d. (-1/3,3/4);(h,5/6); m=7/12
[tex]\frac{\frac{5}{6}-\frac{3}{4} }{h-\frac{-1}{3} }=\frac{7}{12}[/tex] → [tex]\frac{5}{6}-\frac{3}{4}[/tex]= [tex]\frac{7}{12}[/tex] ([tex]{h-\frac{-1}{3} }[/tex]) → [tex]\frac{-4}{21}[/tex]
We get this equation with the original one:
y=mx+b
There are three forms of linear equations:
point-slope form y2-y1=m(x2-x1)
standard form Ax + By + C = 0 or Ax + By = C
and slope-intercept form y=mx+b