A portion of the graph of f(x) = −x2 + 6x − 5 is shown. Which of the following describes all solutions for f(x)? a partial parabola opening down and passing through 1 comma 0 and 5 comma zero with endpoints at 0 comma negative 5 and 6 comma negative 5 (x, y) for all real numbers (x, −x2 + 6x − 5) where 0 ≤ x ≤ 6 (x, −x2 + 6x − 5) where 1 ≤ x ≤ 5 (x, y) where 1 ≤ x ≤ 5

Respuesta :

Step-by-step explanation:

Considering the function

[tex]f\left(x\right)=-x^2+6x-5[/tex]

solving

[tex]-x^2+6x-5=0[/tex]

[tex]\mathrm{Quadratic\:Equation\:Formula:}[/tex]

[tex]\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}[/tex]

[tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]\mathrm{For\:}\quad a=-1,\:b=6,\:c=-5:\quad x_{1,\:2}=\frac{-6\pm \sqrt{6^2-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}[/tex]

[tex]x=\frac{-6+\sqrt{6^2-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}[/tex]

   [tex]=\frac{-6+\sqrt{6^2-4\cdot \:1\cdot \:5}}{-2\cdot \:1}[/tex]

    [tex]=\frac{-6+\sqrt{16}}{-2\cdot \:1}[/tex]

[tex]\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{-b}=\frac{a}{b}[/tex]

[tex]-6+\sqrt{16}=-\left(6-\sqrt{16}\right)[/tex]

  [tex]=\frac{6-\sqrt{16}}{2}[/tex]

  [tex]=\frac{6-4}{2}[/tex]

[tex]x=1[/tex]

Similarly,

[tex]x=\frac{-6-\sqrt{6^2-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}[/tex]

  [tex]=\frac{-6-\sqrt{6^2-4\cdot \:1\cdot \:5}}{-2\cdot \:1}[/tex]

  [tex]=\frac{-6-\sqrt{16}}{-2}[/tex]

  [tex]=\frac{6+\sqrt{16}}{2}[/tex]

[tex]\:x=5[/tex]

[tex]\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}[/tex]

[tex]x=1,\:x=5[/tex]

Also check the attached graph below.

From the graph as shown below, it is clear that

[tex]\mathrm{Domain\:of\:}\:-x^2+6x-5\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]

and

[tex]\mathrm{Range\:of\:}-x^2+6x-5:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\le \:4\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:4]\end{bmatrix}[/tex]

Also

[tex]\mathrm{Axis\:interception\:points\:of}\:-x^2+6x-5:\quad \mathrm{X\:Intercepts}:\:\left(1,\:0\right),\:\left(5,\:0\right),\:\mathrm{Y\:Intercepts}:\:\left(0,\:-5\right)[/tex]

[tex]\mathrm{Vertex\:of}\:-x^2+6x-5:\quad \mathrm{Maximum}\space\left(3,\:4\right)[/tex]

Thus, from the figure, it is clear that a partial parabola opening down, passing through (1, 0) and (5, 0) with endpoints (0, -5) and (6, -5).

Ver imagen SaniShahbaz

Answer:

its c trust me

Step-by-step explanation:

i did it on flvs