Respuesta :

Answer:

General form: [tex]4x^2+4y^2-12x-52y+72=0[/tex]

Standard form: [tex](x-\frac{3}{2})^2+(y-\frac{13}{2})^2=\frac{53}{2}[/tex]

Step-by-step explanation:

The standard form for a circle is [tex](x-h)^2+(y-k)^2=r^2[/tex] where [tex](h,k)[/tex] is the center and [tex]r[/tex] is the radius.

Our goal is to write our equation in general form: [tex]ax^2+ay^2+cx+dy+e=0[/tex].

So I'm going to use standard form right now to try and see if it helps.

Plug in the point [tex](-1,2)[/tex]:

[tex](-1-h)^2+(2-k)^2=r^2[/tex]            Equation 1

Plug in the point [tex](4,2)[/tex]:

[tex](4-h)^2+(2-k)^2=r^2[/tex]            Equation 2

Plug int he point [tex](-3,4)[/tex]:

[tex](-3-h)^2+(4-k)^2=r^2[/tex]           Equation 3

I notice Equation 1 and Equation 2 will have a lot of stuff to cancel if I chose to do Equation 1 minus Equation 2. So let's do that.

[tex](-1-h)^2-(4-h)^2=0[/tex]

Add [tex](4-h)^2[/tex] on both sides:

[tex](-1-h)^2=(4-h)^2[/tex]

The implies:

[tex](-1-h)=\pm(4-h)[/tex]

This us gives us two equation to solve for [tex]h[/tex]:

[tex]-1-h=4-h[/tex] or [tex]-1-h=-4+h[/tex]

The first equation says -1=4 which is never true so we will solve the second one.

[tex]-1-h=-4+h[/tex]

Add [tex]h[/tex] on both sides:

[tex]-1=-4+2h[/tex]

Add 4 on both sides:

[tex]3=2h[/tex]

Divide 2 on both sides:

[tex]\frac{3}{2}=h[/tex]

So let's look at Equation 2 and Equation 3 with [tex]h=\frac{3}{2}[/tex] applied to them:

[tex](4-\frac{3}{2})^2+(2-k)^2=r^2[/tex]

[tex](-3-\frac{3}{2})^2+(4-k)^2=r^2[/tex]

Let's simplify them a bit by performing the addition/subtraction in the ( ):

[tex](\frac{5}{2})^2+(2-k)^2=r^2[/tex]

[tex](-\frac{9}{2})^2+(4-k)^2=r^2[/tex]

Now a little more by applying the square:

[tex]\frac{25}{4}+(2-k)^2=r^2[/tex]

[tex]\frac{81}{4}+(4-k)^2=r^2[/tex]

I will subtract these two equations now because I see it will give an equation just in terms of [tex]k[/tex] to solve:

[tex]\frac{-56}{4}+(2-k)^2-(4-k)^2=0[/tex]

Expand the binomial squares using the identity [tex](u-v)^2=u^2-2uv+v^2[/tex]:

[tex]\frac{-56}{4}+4-4k+k^2-(16-8k+k^2)=0[/tex]

Distribute:

[tex]\frac{-56}{4}+4-4k+k^2-16+8k-k^2=0[/tex]

Combine like terms:

[tex]k^2-k^2-4k+8k+\frac{-56}{4}+4-16=0[/tex]

Simplify:

[tex]4k+-26=0[/tex]

Add 26 on both sides:

[tex]4k=26[/tex]

Divide both sides by 4:

[tex]k=\frac{26}{4}[/tex]

Reduce:

[tex]k=\frac{13}{2}[/tex]

So we now have the center of the circle [tex](h,k)=(\frac{3}{2},\frac{13}{2})[/tex]. We have multiple points to choose from so that we can find the radius. (We will find the radius by finding the distance from the center of the circle to a point on the circle.)

Let's find the the distance from [tex](\frac{3}{2},\frac{13}{2})[/tex] and [tex](4,2)[/tex].

You may use Distance Formula or Pythagorean Theorem.

Find the horizontal distance of the triangle: [tex]4-\frac{3}{2}=\frac{5}{2}[/tex].

Find the vertical distance of the triangle: [tex]\frac{13}{2}-2[/tex][tex]=\frac{9}{2}[/tex].

Now we will find the hypotenuse,[tex]c[/tex], using [tex]c^2=(\frac{5}{2})^2+(\frac{9}{2})^2[/tex].

Simplify the squares:

[tex]c^2=\frac{25}{4}+\frac{81}{4}[/tex]

Simplify by adding:

[tex]c^2=\frac{106}{4}[/tex] (This is [tex]r^2[/tex]; we don't need to find [tex]r[/tex], but I will.)

-Unnecessary for the problem; finding the radius, [tex]r[/tex]-

Take the square root of both sides:

[tex]c=\sqrt{\frac{106}{4}}[/tex]

Simplify the square root:

[tex]c=\frac{\sqrt{106}}{\sqrt{4}}[/tex]

[tex]c=\frac{\sqrt{106}}{2}[/tex]

The equation in standard form is:

[tex](x-\frac{3}{2})^2+(y-\frac{13}{2})^2=\frac{106}{4}[/tex]

(or if you simplify the fraction on the right: [tex](x-\frac{3}{2})^2+(y-\frac{13}{2})^2=\frac{53}{2}[/tex].)

Now we wanted this in general form so we will need to expand the binomial squares:

[tex]x^2-3x+\frac{9}{4}+y^2-13y+\frac{169}{4}=\frac{106}{4}[/tex]

Multiply both sides by 4 to get rid of the fractions:

[tex]4x^2-12x+9+4y^2-52y+169=106[/tex]

Reorder to put in order using commutative property:

[tex]4x^2+4y^2-12x-52y+169+9=106[/tex]

Simplify the addition on 169 and 9:

[tex]4x^2+4y^2-12x-52y+178=106[/tex]

Subtract 106 on both sides:

[tex]4x^2+4y^2-12x-52y+72=0[/tex]

The general form is [tex]4x^2+4y^2-12x-52y+72=0[/tex] .