Step-by-step explanation:
As we know that
The perpendicular bisector of the line segment joining the points (1, 1) and (1, 3) will be:
[tex]\:y=\:\frac{1+3}{2}=\frac{4}{2}=2[/tex]
The perpendicular bisector of the line segment joining the points (1, 3), and (9, 2) will be:
[tex]x=\:\frac{1+9}{2}=\frac{10}{2}=5[/tex]
These intersect at the center of the circle (5, 2).
The distance between (1, 1) and (5, 2) will be:
[tex]\mathrm{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]
[tex]\mathrm{The\:distance\:between\:}\left(1,\:1\right)\mathrm{\:and\:}\left(5,\:2\right)\mathrm{\:is\:}[/tex]
[tex]=\sqrt{\left(5-1\right)^2+\left(2-1\right)^2}[/tex]
[tex]=\sqrt{4^2+1}[/tex]
[tex]=\sqrt{16+1}[/tex]
[tex]=\sqrt{17}[/tex]
So the equation of the circle can be written as:
[tex]\left(x-5\right)^2+\left(y-2\right)^2=17[/tex]
[tex]x^2-10x+y^2+29-4y=17[/tex]
[tex]x^2-10x+y^2-4y+12\:=0[/tex]
[tex]x^2+y^2-10x-4y+12=0[/tex]