Respuesta :
Answer:
[tex]x =1 + \sqrt{ \frac{23}{8} } [/tex]
or
[tex]x =1 - \sqrt{ \frac{23}{8} } [/tex]
Step-by-step explanation:
The given quadratic function is
[tex]f(x) = 8 {x}^{2} - 16x - 15[/tex]
To find the roots, we set f(x)=0 to get:
[tex]8 {x}^{2} - 16x - 15 = 0[/tex]
The solution is given by:
[tex]x = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} [/tex]
where a=8, b=-16, c=-15
We substitute to get:
[tex]x = \frac{ - - 16 \pm \sqrt{ {( -1 6)}^{2} - 4 \times 8 \times - 15} }{2 \times 8} [/tex]
We simplify to get:
[tex]x = \frac{ 16 \pm \sqrt{256 + 480} }{16} [/tex]
[tex]x =1 \pm \sqrt{ \frac{23}{8} } [/tex]
[tex]x =1 - \sqrt{ \frac{23}{8} }[/tex]
or
[tex]x =1 + \sqrt{ \frac{23}{8} } [/tex]
Answer:
C. on Edge
Got 100% on the test
Step-by-step explanation:
Proof in the attached picture.
