What are the zeros of the quadratic function f(x) = 8x2 – 16x – 15? x = –1 – Startroot 2 EndRoot and x = –1 + Startroot 2 EndRoot x = –1 – StartRoot StartFraction 15 Over 8 EndFraction EndRoot and x = –1 + StartRoot StartFraction 15 Over 8 EndFraction EndRoot x = 1 – StartRoot StartFraction 23 Over 8 EndFraction EndRoot and x = 1 + StartRoot StartFraction 23 Over 8 EndFraction EndRoot x = 1 – StartRoot 7 EndRoot and x = 1 + StartRoot 7 EndRoot

Respuesta :

Answer:

[tex]x =1 + \sqrt{ \frac{23}{8} } [/tex]

or

[tex]x =1 - \sqrt{ \frac{23}{8} } [/tex]

Step-by-step explanation:

The given quadratic function is

[tex]f(x) = 8 {x}^{2} - 16x - 15[/tex]

To find the roots, we set f(x)=0 to get:

[tex]8 {x}^{2} - 16x - 15 = 0[/tex]

The solution is given by:

[tex]x = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} [/tex]

where a=8, b=-16, c=-15

We substitute to get:

[tex]x = \frac{ - - 16 \pm \sqrt{ {( -1 6)}^{2} - 4 \times 8 \times - 15} }{2 \times 8} [/tex]

We simplify to get:

[tex]x = \frac{ 16 \pm \sqrt{256 + 480} }{16} [/tex]

[tex]x =1 \pm \sqrt{ \frac{23}{8} } [/tex]

[tex]x =1 - \sqrt{ \frac{23}{8} }[/tex]

or

[tex]x =1 + \sqrt{ \frac{23}{8} } [/tex]

Answer:

C. on Edge

Got 100% on the test

Step-by-step explanation:

Proof in the attached picture.

Ver imagen kellerjohn394oxqpjw