cones a and b both have volume 48pi cubic units, but have different dimensions. cone a has radius 6 units and height 4 units. find one possible radius and height for cone b. explain how you know come b has the same volume as cone a

Respuesta :

Answer:

see the explanation

Step-by-step explanation:

we know that

The volume of a cone is equal to

[tex]V=\frac{1}{3}\pi r^{2}h[/tex]

[tex]V=48\pi\ units^3[/tex]

so

[tex]48\pi=\frac{1}{3}\pi r^{2}h[/tex]

Simplify

[tex]144=r^{2}h[/tex] ----> equation A

step 1

Cone a

[tex]r_a=6\ units\\h_a=4\ units[/tex]

Verify

substitute the given values in equation A

[tex]144=r^{2}h[/tex]

[tex]144=6^{2}(4)[/tex]

[tex]144=144[/tex] ---> is true

step 2

Cone b

Assume the value of the radius and with the equation A calculate the value of the height

so

For [tex]r=5\ units[/tex]

substitute in the equation A

[tex]144=r^{2}h[/tex]

[tex]144=5^{2}h[/tex]

solve for h

[tex]144=25h[/tex]

[tex]h=5.76\ units[/tex]

Verify

substitute the given values in equation A

[tex]144=r^{2}h[/tex]

[tex]144=5^{2}(5.76)[/tex]

[tex]144=144[/tex] ---> is true

The value of r and h satisfy the equation A, that means the volume of cone b is the same that volume of cone a