Answer:
The total area of the four triangles is 48 square units
Step-by-step explanation:
we know that
The lateral area of the square pyramid is equal to the area of the four triangular faces
so
[tex]LA=4[\frac{1}{2}(b)(h)][/tex]
where
[tex]b=6\ units[/tex]
Find the height of the triangular faces
Note: The height of the four triangles is the same because is a right square pyramid
Applying the Pythagorean Theorem
[tex]h^2=5^2-(6/2)^2[/tex]
[tex]h^2=25-9\\h^2=16\\h=4\ units[/tex]
Find the lateral area
[tex]LA=4[\frac{1}{2}(b)(h)][/tex]
substitute the given values
[tex]LA=4[\frac{1}{2}(6)(4)]=48\ units^2[/tex]