Respuesta :

Answer:

17.1 degrees

Step-by-step explanation:

The complete question in the attached figure

step 1

Find the length side of the diagonal AC in rectangle ABCD

Applying the Pythagorean Theorem

[tex]AC^2=AB^2+BC^2[/tex]

substitute the given values

[tex]AC^2=60^2+80^2[/tex]

[tex]AC^2=10,000\\AC=100\ cm[/tex]

step 2

Find the length side RC in the right triangle BRC

we know that

[tex]tan(21^o)=\frac{RC}{BC}[/tex] ----> by TOA (opposite side divided by adjacent side)

substitute the given values

[tex]tan(21^o)=\frac{RC}{80}[/tex]

[tex]RC=tan(21^o){80}[/tex]

[tex]RC=30.71\ cm[/tex]

step 3

Calculate the angle that AR makes with the horizontal plane ABCD

In the right triangle ARC

we know that

[tex]tan(\angle RAC)=\frac{RC}{AC}[/tex] ----> by TOA (opposite side divided by adjacent side)

substitute the given values

[tex]tan(\angle RAC)=\frac{30.71}{100}[/tex]

[tex]\angle RAC=17.1^o[/tex]

Ver imagen calculista