Respuesta :

Answer:  " [tex]\frac{8b^4}{3a^1^2}[/tex] " .

__________________________________________________

Step-by-step explanation:

__________________________________________________

We are asked to simplify the following given expression:

________________

         [tex]\frac{(\frac{2b^3c}{a^3b^2c^2})^4}{6}[/tex]    ;

________________

Let us start with the "numerator" ;  which functions as a separate "fraction"—in and of itself—with its own numerator and denominator:

________________

     [tex](\frac{2b^3c}{a^3b^2c^2})^4[/tex] ;

________________

Note the following "division" property of exponents:

________________

 →  [tex](\frac{a}{b})^c = \frac{a^c}{b^c}[/tex]  ;  [tex]b\neq 0[/tex] .

________________

Then:

→  (\frac{2b^3c}{a^3b^2c^2})^4 ;

________________

   =   [tex]\frac{(2b^3c)^4}{(a^3b^2c^2)^4}[/tex]  ;  [tex]a\neq 0[/tex] ; [tex]b\neq 0[/tex] ; [tex]c\neq 0[/tex] .

________________

Then, start by simplifying "this particular numerator":

     →  [tex](2b^3c)^4 = ?[/tex] ;

Note the following "multiplication" property of exponents:

→ [tex](a^b)^c = a^(^b^*^c^)[/tex]  ;  [tex]b\neq 0[/tex] .

________________

Then:

→ [tex](2b^3c)^4 = 2^4 * b^(^3^*^4^)(c^4) = (2*2*2*2) * b^1^2 * c^4 = 16 b^1^2c^4[/tex] ;

________________

The continue by simplifying "this particular denominator":

________________

→[tex](a^3b^2c^2)^4 = a^(^3^*^4^)b^(^2^*^4^)c^(^2^*^4^) = a^1^2b^8c^8[/tex]

________________

And we have:

________________

→  [tex]\frac{16b^1^2c^4}{a^1^2b^8c^8}[/tex]   .

________________

Note the following properties of exponents:

________________

→ [tex]a^-^b = \frac{1}{a^b}[/tex] ;  [tex]a\neq 0[/tex] .

________________

→ [tex]\frac{a^c}{a^b} = a^(^c^-^b^)[/tex] ;  [tex]a \neq 0[/tex] .

________________

So, we have:  

\frac{16b^1^2c^4}{a^1^2b^8c^8} ;

________________

→ 16 ÷ 1  = 16 ;  ("1" is the "implied coefficient") ; in the numerator.

→ [tex]a^1^2[/tex] ;  stays in the denominator;

→  [tex]\frac{b^1^2}{b^8} = b^(^1^2^-^8^)=b^4[/tex] ; replaces the original: "[tex]b^1^2[/tex] " [in the numerator];  [tex]b^8[/tex] is eliminated in the denominator;

→ [tex]\frac{c^4}{c^8} = c^(^4^-^8^) = c^-^4 = \frac{1}{c^4}[/tex] ;  The original "[tex]c^4[/tex] " [in the numerator] is eliminated; the original "[tex]c^8[/tex] " [in the denominator] is replaced with "[tex]c^4[/tex] " . ________________

And the expression is rewritten as:

________________

→  [tex]\frac{16b^4}{a^1^2c^4}[/tex] ;

________________

→ Now, from the original given problem, we divide this value by "6" ;

which is the same value we get by multiplying this value by: " [tex]\frac{1}{6}[/tex] " ;

→ as follows:

________________

→  [tex]\frac{16b^4}{a^1^2c^4} *\frac{1}{6}[/tex]  ;

________________

Considering the "16" and the "6" ;  each of these can be divided by "2" ;

Specifically, " (16 ÷2 = 8) " ;  and:  " (6 ÷ 2 = 3) " .

________________

So, we can rewrite the expression — by substituting "8" in lieu of the "16" ; and "3" in lieu of the "6" ; as follows:

________________

→  [tex]\frac{8b^4}{a^1^2} * \frac{1}{3}[/tex]  ;

And further simplify;

→ [tex]\frac{8b^4}{a^1^2} * \frac{1}{3} = \frac{(8b^4 * 1)}{(a^1^2*3)} = \frac{8b^4}{3a^1^2} .[/tex]

________________

Hope this helps!

  Best wishes!

________________