Respuesta :

Answer:

Check the attached graph below.

Step-by-step explanation:

Let us consider the quadratic function

[tex]f\left(x\right)\:=\:2x^2\:-\:12x\:+\:16[/tex]

Observe that

[tex]a\:=\:2,\:b\:=\:-12,\:c\:=\:16[/tex]

As the value of [tex]a[/tex] is positive.

i.e. [tex]a=2[/tex]

so, it would be an upward (U-shaped) graph.

Now, calculating the value of '[tex]h[/tex]'.

[tex]h=\frac{-b}{2a}[/tex]

   [tex]=\frac{-\left(-12\right)}{\left(2\cdot \:\:2\right)}[/tex]

   [tex]= 3[/tex]

Then calculating [tex]k[/tex] (using [tex]h=3[/tex])

[tex]k = f(3)[/tex]

   [tex]=\:2\left(3\right)^2\:-\:12\cdot 3\:+\:16[/tex]

    [tex]= 18-36+16[/tex]

    [tex]= -2[/tex]

Now, plotting the graph, and the graph is attached below.

From the graph, it is clear that,

  • [tex]\mathrm{X\:Intercepts}:\:\left(4,\:0\right),\:\left(2,\:0\right),\:\mathrm{Y\:Intercepts}:\:\left(0,\:16\right)[/tex]
  • The parabola is upward.
  • The parabola vertex is [tex]\left(3,\:-2\right)[/tex]

Please check the attached graph below.

Ver imagen SaniShahbaz