Respuesta :

Answer:

The ratio of the diameter of iron to Cu is;

[tex]\frac{d{Fe} }{ d{Cu} } =\sqrt{\frac{p_{Fe} }{ p_{Cu} }}[/tex]

Explanation:

R=(ρL)/A

  • R is resistance,
  • L is length,
  • A is area,
  • ρ is resistivity
  • d is diameter

from the question the two materials have the same resistance per unit length.

[tex]\frac{R}{L}= \frac{p}{A}[/tex]

[tex]\frac{R}{L}[/tex]   for iron = [tex]\frac{R}{L}[/tex]  for copper

This means we can equate ρ/A for both materials.

[tex]\frac{p_{Fe} }{A_{Fe} } =\frac{p_{Cu} }{A_{Cu} }[/tex]

re-arranging the equation we have,

[tex]\frac{A_{Fe}}{A_{Cu} } =\frac{p_{Fe} }{ p_{Cu} }[/tex]

[tex]A=\pi \frac{d^{2} }{4}[/tex]

[tex]\frac{A_{Fe}}{A_{Cu} } =\frac{d^{2}{Fe} }{ d^{2}{Cu} }[/tex]

[tex]\frac{d^{2}{Fe} }{ d^{2}{Cu} } =\frac{p_{Fe} }{ p_{Cu} }[/tex]

[tex]\frac{d{Fe} }{ d{Cu} } =\sqrt{\frac{p_{Fe} }{ p_{Cu} }}[/tex]