Respuesta :

Answer:

[tex]x = - 1.60[/tex]

Step-by-step explanation:

We want to solve

[tex] {4}^{x + 3} = 7[/tex]

using change of base formula.

First we take antilog to get;

[tex]x + 3 = log_{4}(7) [/tex]

The formula is:

[tex] log_{b}(y) = \frac{ log(y) }{ log(b) } [/tex]

We apply apply the change of base formula on the right to get:

[tex]x + 3 = \frac{ log(7) }{ log(4) } [/tex]

[tex]x + 3 = 1.40[/tex]

Subtract 3 from both side to get:

[tex]x = 1.4 - 3 = - 1.6[/tex]