A tire has a volume of 3 ft3 and a gage pressure of 32 psi at 75 o F. If the ambient pressure is sea-level standard, how much does the air in the tire weigh

Respuesta :

Explanation:

Relation between density and pressure is as follows.

         [tex]\rho = \frac{P}{RT}[/tex]

         P = [tex](32 lb/in^{2} + 14.7 lb/in^{2}) \times 144 in^{2}/ft^{2}[/tex]

            = 6724.8 [tex]lb/ft^(2)[/tex]

Value of R = 1716 [tex]ft.lb/slug ^{o}R[/tex]

           T = [tex](75 + 460)^{o}R[/tex]

Now, we will calculate the density as follows.

           [tex]\rho = \frac{6724.8}{1716 \times 535}[/tex]

                        = 0.007325 [tex]slugs/ft^{3}[/tex]

Therefore, density of the air is 0.007325 [tex]slugs/ft^{3}[/tex].

Now, we will calculate the weight of the air as follows.

           W = [tex]\rho gV[/tex]

               = [tex]0.007325 \times 9.8 \times 3[/tex]

               = 0.215 lbf

Therefore, weight of the tire in air is 0.215 lbf.