Respuesta :

The equivalent expression is:

[tex](x^{\frac{4}{3}}x^{\frac{2}{3}})^{\frac{1}{3}} = x^{\frac{2}{3}[/tex]

Solution:

Given expression is:

[tex]\displaystyle (x^{\frac{4}{3}}x^{\frac{2}{3}})^{\frac{1}{3}}[/tex]

We have to find the equivalent expression

We can simplify the above expression using law of exponents

Use the following law of exponents:

[tex]a^m \times a^n = a^{m+n}[/tex]

Therefore,

[tex]\displaystyle (x^{\frac{4}{3}}x^{\frac{2}{3}})^{\frac{1}{3}} = (x^{\frac{4}{3}+\frac{2}{3}})^{\frac{1}{3}}\\\\Simplify\\\\\displaystyle (x^{\frac{4}{3}}x^{\frac{2}{3}})^{\frac{1}{3}} = (x^2)^\frac{1}{3}[/tex]

Use another law of exponent

[tex](a^m)^n = a^{mn}[/tex]

Therefore,

[tex](x^{\frac{4}{3}}x^{\frac{2}{3}})^{\frac{1}{3}} = x^{\frac{2}{3}[/tex]

Thus the equivalent expression is found

Answer:

B on edg

Step-by-step explanation: