Respuesta :

Answer:

 [tex]y\ge -\frac{2}{3}x+1[/tex] represents the graph. So, option A is true.

Step-by-step explanation:

Considering the linear inequality

[tex]y\ge -\frac{2}{3}x+1[/tex]

as

[tex]\mathrm{Domain\:of\:}\:-\frac{2}{3}x+1\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]

and

[tex]\mathrm{Range\:of\:}-\frac{2}{3}x+1:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]

[tex]x-\mathrm{axis\:interception\:points\:of\:}-\frac{2}{3}x+1:\quad \left(\frac{3}{2},\:0\right)[/tex]

[tex]-\frac{2}{3}x+1=0:\quad x=\frac{3}{2}[/tex]

[tex]\left(\frac{3}{2},\:0\right)[/tex]

[tex]y-\mathrm{axis\:interception\:point\:of\:}-\frac{2}{3}x+1:\quad \left(0,\:1\right)[/tex]

[tex]y=-\frac{2}{3}\cdot \:0+1[/tex]

[tex]y=-0+1[/tex]

[tex]y=1[/tex]

Thus,

[tex]\mathrm{X\:Intercepts}:\:\left(\frac{3}{2},\:0\right),\:\mathrm{Y\:Intercepts}:\:\left(0,\:1\right)[/tex]

[tex]\mathrm{Slope\:of\:}-\frac{2}{3}x+1:\quad m=-\frac{2}{3}[/tex]

Also, (-3, 3) holds true.

as

[tex]3\ge \:-\frac{2}{3}\cdot \left(-3\right)+1[/tex]

[tex]3\ge \:\frac{2}{3}\cdot \:\:3+1[/tex]

[tex]3\ge \:2+1[/tex]

[tex]3\ge \:3[/tex]

WHICH IS TRUE!

Therefore,

                   [tex]y\ge -\frac{2}{3}x+1[/tex] represents the graph. So, option A is true.

Ver imagen SaniShahbaz

Step-by-step explanation:

The boundary line goes through (-3,3) and (0,1)

The slope of this line is:

[tex]m = \frac{1 - 3}{0 - - 3} = \frac{ - 2}{3} = - \frac{2}{3} [/tex]

The y-intercept is b=1.

The equation of the boundary line is given by

[tex]y = mx + b[/tex]

Substitute and obtain:

[tex]y = - \frac{2}{3} x + 1[/tex]

Since boundary line is shaded and the right half-plane of the boundary line is shaded, the corresponding inequality is

[tex]y \geqslant - \frac{2}{3}x + 1[/tex]