A bond has a $1,000 par value, 15 years to maturity, and a 8% annual coupon and sells for $1,080. What is its yield to maturity (YTM)? Round your answer to two decimal places.

Respuesta :

Answer:

YTM = 7.27%

Explanation:

We know,

Yield to Maturity (YTM) = [tex]\frac{I + \frac{M - V_{0} }{n} }{\frac{2M + V_{0}}{3}}[/tex]

Here,

I = Coupon Payment = Coupon Rate × Par Value

M = Par Value

[tex]V_{0}[/tex] = Market value/Current value

n = Number of years/periods.

Given,

M = $1,000

[tex]V_{0}[/tex] = $1,080

I = $1,000 × 8% = $80

n = 15 years

Putting the values into the formula, we can get...

Yield to Maturity (YTM) = [tex]\frac{I + \frac{M - V_{0} }{n} }{\frac{2M + V_{0}}{3}}[/tex]

or, YTM = [tex]\frac{80 + \frac{1,000 - 1,080}{15} }{\frac{2*1,000 + 1,080}{3}}[/tex]

or, YTM = [tex]\frac{80 - 5.33}{1,026.67}[/tex]

or, YTM = 0.072730

Therefore, YTM = 7.27%