Rhodium crystallizes in the face‑centered cubic (FCC) lattice. The density of the metal is 12410 kg / m 3 . Calculate the radius of a rhodium atom.

Respuesta :

Answer:

1.34×10^-8 cm

Explanation:

Ver imagen Abdulazeez10
Ver imagen Abdulazeez10

Answer:

  • The radius of a rhodium atom, [tex]r = 134.55pm[/tex]

Explanation:

From,

Density, [tex]d = \frac{Z*atomic mass}{N_o*a^3*10^{-30}}[/tex]

where

Z = non of atoms in a unit cell = 4

[tex]N_o[/tex] = Avagrado number = [tex]6.023*10^{23}[/tex]

a = edge length

Atomic mass of Rhodium = [tex]103 g/mol[/tex]

density [tex]d = 12410 kg/m^3 = 12.41 g/cm^3[/tex]

Therefore,

[tex]a^3 = \frac{Z*atomic mass}{N_o*10^{-30}*d}\\\\a^3 = \frac{4*103}{6.023*10^{23}*10^{-30}*12.41}\\\\a^3 = 55120426.76\\\\a = 380.57 pm[/tex]

For fcc arrangement,

[tex]r = \frac{\sqrt2}{4}*a\\\\r = \frac{\sqrt2}{4}*380.57\\\\r = 134.55pm[/tex]

For more information visit

https://brainly.com/question/14885097