Respuesta :

Option C: The solution set is [tex]\{8\}[/tex]

Explanation:

The expression is [tex]3 \ln 4=2 \ln x[/tex]

Now, let us find the solution set.

Switch sides, we get,

[tex]2 \ln x=3 \ln 4[/tex]

Dividing by 2 on both sides, we have,

[tex]\ln x=\frac{3 \ln 4}{2}[/tex]

Thus,  [tex]\ln 4=\ln 2^2=2\ln 2[/tex]

Hence, the above expression becomes,

[tex]\ln x=\frac{3 \cdot 2 \ln (2)}{2}[/tex]

Simplifying, we get,

[tex]\ln x=3 \ln 2[/tex]

Applying the log rule, we get,

[tex]$\ln x$=\ln \left(2^{3}\right)$[/tex]

Simplifying, we have,

[tex]$\ln x$=\ln \left8\right$[/tex]

Applying the log rule, we have,

[tex]x=8[/tex]

Thus, the solution set is [tex]\{8\}[/tex]

Hence, Option C is the correct answer.