Area of triangle = [tex]\frac{s^{2} }{2}[/tex]
Step-by-step explanation:
Jaya has 10 square pieces of origami paper , she folds the square into 4 equal triangle s. We have, a triangle with side s . Now, in square if we see , length of diagonal is 2s . Let side of square is a ∴ By Pythagoras theorem , [tex]Diagonal^{2} = a^{2} + a^{2}[/tex]
[tex](2s)^{2} = 2a^{2}[/tex]
[tex]4s^{2} = 2a^{2}[/tex]
[tex]a = \sqrt{2} s[/tex] .
Now, Area of triangle = [tex]\frac{1}{2} \times \text { base } \times \text { height }[/tex]
base = [tex]\sqrt{2}s[/tex] and height = [tex]\frac{\sqrt{2} s}{2}[/tex]
∴Area of triangle = [tex]\frac{1}{2}\\[/tex] × [tex]\sqrt{2}s[/tex] × [tex]\frac{\sqrt{2} s}{2}[/tex]
Area of triangle = [tex]\frac{s^{2} }{2}[/tex]