Respuesta :
[tex](k_ {0} p) (x) = 2x^2 -16x + 24[/tex]
Solution:
Given functions are:
[tex]k(x) = 2x^2 - 8\\\\p(x) = x-4[/tex]
To Find: [tex](k_ {0} p) (x)[/tex]
By definition of compound functions,
[tex](k_ {0} p) (x) = k (p (x))[/tex]
Substitute p(x) value in x place in k(x)
[tex](k_ {0} p) (x) = 2(x-4)^2-8\\\\Expand\\\\(k_ {0} p) (x) =2(x^2 -8x +16) - 8\\\\(k_ {0} p) (x) = 2x^2 -16x + 32-8\\\\Simplify\\\\(k_ {0} p) (x) = 2x^2 -16x + 24[/tex]
Thus the required is found
Answer:
The answer is A. (k o p) (x)=2x^2-16x+24
Step-by-step explanation: