Given the functions k(x) = 2x2 − 8 and p(x) = x − 4, find (k ∘ p)(x).
(k ∘ p)(x) = 2x2 − 16x + 24
(k ∘ p)(x) = 2x2 − 8x + 8
(k ∘ p)(x) = 2x2 − 16x + 32
(k ∘ p)(x) = 2x2 − 12

Respuesta :

[tex](k_ {0} p) (x) = 2x^2 -16x + 24[/tex]

Solution:

Given functions are:

[tex]k(x) = 2x^2 - 8\\\\p(x) = x-4[/tex]

To Find: [tex](k_ {0} p) (x)[/tex]

By definition of compound functions,

[tex](k_ {0} p) (x) = k (p (x))[/tex]

Substitute p(x) value in x place in k(x)

[tex](k_ {0} p) (x) = 2(x-4)^2-8\\\\Expand\\\\(k_ {0} p) (x) =2(x^2 -8x +16) - 8\\\\(k_ {0} p) (x) = 2x^2 -16x + 32-8\\\\Simplify\\\\(k_ {0} p) (x) = 2x^2 -16x + 24[/tex]

Thus the required is found

Answer:

The answer is A. (k o p) (x)=2x^2-16x+24

Step-by-step explanation: