Respuesta :

Answer:

the equivalent value of (fg)(10) is 37

Step-by-step explanation:

We are given: f(x)=[tex]x^{2}[/tex]+1

                        g(x)=x-4

Required: (f*g)(10)?

First, we will find the value of f*g by plugging the value of g(x) into f(x):

f(x)(g(x))= [tex](x-4)^{2}[/tex]+1

f(x)(g(x))= (x-4)(x-4)+1

            =[tex]x^{2}[/tex]-4x-4x+16+1

            =[tex]x^{2}[/tex]-8x+16+1

Next, we now find the equivalent value of (fg)(10) by putting the value of x as 10 in the last expression:

(fg)(10)=[tex]10^{2}[/tex]-8(10)+16+1

Evaluate the value of the last expression to obtain:

(fg)(10)=100-80+16+1=21

Hence, the equivalent value of (fg)(10) is 37