Answer:
μ_k=0.58
Explanation:
First, we state the givens and required in our example here, then we will proceed through our solution steps Â
m_book=5.0 kg
d= 0.62 m
F_horizontal= 30 N
v_f=1.5 m/s
μ_k=??
Now, we will put our motion equations due to force, according to Newton's Second Law Â
∑F=ma
Vertical-->W-N=0 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (1)
Horizontal-->F_horizontal-μ_k=ma       (2)
So now, let's solve for μ_k from the second equation Â
F_horizontal-μ_k*N=ma
μ_k=F_horizontal-ma/N                (3)
Then, we need to calculate N, a to get the value of μ_k
From equation Number (1), we can calculate N like this Â
N=W=mg
N=34.3 N
Second, by using kinematics we will find the value of a Â
v_f^2=v_o^2+2a*d
Solving for a, we get Â
a=v_f^2-v_o^2/2d
a=1.42 m/s^2
Finally, we plug in our calculated values in equation number (3) Â
μ_k=(F_horizontal-ma)/N
μ_k=0.58