A Carnot engine operates between reservoirs at 600 and 300 K. If the engine absorbs 100 J per cycle at the hot reservoir, what is its work output per cycle?

Respuesta :

Answer:

W =50 J

Explanation:

given data:

T_h=600 k

T_L=300 k

Q_h=100 J

required:

W=??

solution:

║W║=║Q_h║(1-T_L/T_h)

        =50 J

Answer:

50J

Explanation:

For a Carnot engine, the work output (W) per cycle is given by;

W = Q (1 - [tex]\frac{T_{C} }{T_{H}}[/tex])          ----------------(i)

Where;

Q = heat absorbed by the engine per cycle

[tex]T_{C}[/tex] = Temperature of the colder reservoir

[tex]T_{H}[/tex] = Temperature of the hotter reservoir

From the question;

Q = 100J

[tex]T_{C}[/tex] = 300K

[tex]T_{H}[/tex] = 600K

Substitute these values into equation (i) as follows;

W = 100 (1 - [tex]\frac{300 }{600}[/tex])

W = 100 (1 - [tex]\frac{1}{2}[/tex])

W = 100 ([tex]\frac{1}{2}[/tex])

W = 50 J

Therefore, the work output per cycle is 50J