Verify the identity. sine x times secant x equals tangent x To verify the​ identity, start with the more complicated side and transform it to look like the other side. Choose the correct transformations and transform the expression at each step.

Respuesta :

[tex]\sin x \times \sec x=\tan x,[/tex] proved.

Step-by-step explanation:

To verify, the identity [tex]\sin x \times \sec x=\tan x[/tex].

L.H.S. [tex]=\sin x \times \sec x[/tex]

We know that,

[tex]\sec A\cos A=1[/tex]

⇒ [tex]\sec A=\dfrac{1}{\cos A}[/tex]

Now, L.H.S., becomes

[tex]=\sin x \times \dfrac{1}{\cos x}[/tex]

[tex]=\dfrac{\sin x}{\cos x}[/tex]

= [tex]\tan x[/tex]

= R.H.S., verify.

Thus, [tex]\sin x \times \sec x=\tan x,[/tex] proved.