Respuesta :

Option B:

[tex]$\frac{9{s^2} }{4 {m^3} {p^6}}[/tex]

Solution:

Given expression:

[tex]$\frac{9 m^{-3} p^{-6}}{4 s^{-2}}[/tex]

To write this expression without negative exponents:

[tex]$\frac{9 m^{-3} p^{-6}}{4 s^{-2}}[/tex]

Using exponent rule: [tex]a^{-b}=\frac{1}{a^b}[/tex]

[tex]$m^{-3}=\frac{1}{m^3}[/tex]

[tex]$p^{-6}=\frac{1}{p^6}[/tex]

[tex]$s^{-2}=\frac{1}{s^2}[/tex]

Substitute these in the expression.

[tex]$\frac{9 m^{-3} p^{-6}}{4 s^{-2}}=\frac{9 \frac{1}{m^3} \frac{1}{p^6} }{4 \frac{1}{s^2} }[/tex]

Denominator of fraction in denominator goes to numerator.

Denominator of fraction in numerator goes to denominator.

Therefore, [tex]s^2[/tex] goes to numerator and [tex]m^3p^6[/tex] goes to denominator.

               [tex]$=\frac{9 \times {s^2} }{4 {m^3}\times{p^6}}[/tex]

              [tex]$=\frac{9{s^2} }{4 {m^3} {p^6}}[/tex]

Option B is the correct answer.

[tex]$\frac{9 m^{-3} p^{-6}}{4 s^{-2}}=\frac{9{s^2} }{4 {m^3} {p^6}}[/tex]