Answer:
[tex]F=16.366N[/tex]
Explanation:
Given data
Initial velocity of neutron v₀=1.4×10⁷m/s
Diameter of nucleus d=1×10⁻¹⁴m
Mass of neutron m=1.67×10⁻²⁷kg
The acceleration of neutron is given from equation :
[tex]v^{2}=v_{o}^{2}+2ad\\ where\\v=0\\So\\a=\frac{v^{2}-v_{o}^{2} }{2d}\\ a=\frac{-v_{o}^{2}}{2d}\\ a=\frac{-(1.4*10^{7}m/s )^{2}}{2(1.0*10^{-14} m)}\\a=-9.81*10^{27}m/s^{2}[/tex]
So its magnitude is a=9.81×10²⁷m/s²
To find magnitude of force we use Newtons second law of motion
So
[tex]F=ma\\F=(1.67*10^{-27} kg)(9.81*10^{27}m/s^{2} )\\F=16.366N[/tex]