Sketch the region bounded by the curves, and visually estimate the location of the centroid. (Do this on paper. Your instructor may ask you to turn in this work.) Then find the exact coordinates of the y=ex y-0,x-0,x-2

Respuesta :

Answer:

Bar x = 2/3 and bar y = 2/3

Step-by-step explanation:

The attachment below contains the answers

Ver imagen elijahjoseph1

Answer:

[tex](\bar x,\bar y)=(\frac{e^2+1}{e^2-1},\frac{e^2+1}{4} )[/tex]

Step-by-step explanation:

[tex]y=e^x,\:y=0,\:x=0,\:x=2[/tex]  are given.

Firstly, we will find the area.

[tex]A = \int\limits^2_0e^x\:dx=e^2-1[/tex]

Secondly, we will find the x-coordinate of the centroid.

[tex]\bar x=\frac{1}{A} \int\limits^b_a x f(x)\:dx=\frac{1}{e^2-1}\int\limits^2_0 xe^x\:dx =\frac{1}{e^2-1}(xe^x-e^x)|^2_0=\frac{e^2+1}{e^2-1}[/tex]

Finally, we will find the y-coordinate of the centroid.

[tex]\bar y=\frac{1}{A} \int\limits^b_a \frac{1}{2} [f(x)]^2\:dx=\frac{1}{e^2-1}\frac{1}{2} \int\limits^2_0 e^{2x}\:dx =\frac{1}{2(e^2-1)}(\frac{e^{2x}}{2} )|^2_0=\frac{e^4-1}{4(e^2-1)}=\frac{e^2+1}{4}[/tex]

So the coordinates of centroid is:

[tex](\bar x,\bar y)=(\frac{e^2+1}{e^2-1},\frac{e^2+1}{4} )[/tex]

The sketch is given in the attachment.

Ver imagen erturkmemmedli