Answer:
The density of iceberg upper water and under water are 102.5 kg/m³ and 922.5 kg/m³
Explanation:
Given that,
Volume of seawater = 90 % of Volume of iceberg
Volume of visible surface = 10 %
Density of seawater = 1025 kg/m³
We need to calculate the density of the iceberg
Using equilibrium condition
[tex]W_{I}=F_{B}[/tex]
[tex]\rho_{I}\times V_{I}\times g= \rho_{w}\timesV_{w}\times g[/tex]
Put the value into the formula
[tex]\rho_{I}\times V_{I}\times g=\rho_{w}\times0.9V_{I}\times g[/tex]
[tex]\rho_{I}=1025\times0.9[/tex]
[tex]\rho_{I}=922.5kg/m^3[/tex]
We need to calculate the density of the iceberg
Using equilibrium condition
[tex]W_{I}=F_{B}[/tex]
[tex]\rho_{I}\times V_{I}\times g= \rho_{w}\timesV_{w}\times g[/tex]
Put the value into the formula
[tex]\rho_{I}\times V_{I}\times g=\rho_{w}\times0.1V_{I}\times g[/tex]
[tex]\rho_{I}=1025\times0.1[/tex]
[tex]\rho_{I}=102.5\ kg/m^3[/tex]
Hence, The density of iceberg upper water and under water are 102.5 kg/m³ and 922.5 kg/m³