Answer:
Pure Capacitance
[tex]C=2*10^{-5}\:F[/tex]
Explanation:
[tex]\omega=500\:\:rad/s,\:\theta_V=30^{\circ },\:\theta_I=120^{\circ }[/tex]
[tex]\theta_{VI}=|\theta_V-\theta_I|=90^{\circ}[/tex]
Notice that phasor I leads phasor V by 90 degrees.
Hence we are looking for the impedance [tex]Z_C[/tex] which is a pure capacitance.
[tex]Z_C=\frac{V_C}{I_C}= \frac{200\angle 30^\circ }{2\angle 120^\circ } =100\angle {-90^\circ }\\\\Z_C=\frac{1}{\omega C}\angle {-90^\circ }=100\angle {-90^\circ }\\\\C=\frac{1}{100\omega} =\frac{1}{100*500} =2*10^{-5}\:F[/tex]