Respuesta :
Answer:
Angle is 55.52°
and Initial Speed is v=26.48 m/s
Explanation:
Given data
[tex]x_{o}=0m\\ y_{o}=1.23m\\a_{oy}=a_{1y}=g=-9.8m/s^{2} \\x_{1}=67.0m\\y_{1}=0m\\t_{o}=0\\a_{ox}=m/s^{2} \\t_{1}=4.50s[/tex]
Applying the kinematics equations for motion with uniform acceleration in x and y direction
So
[tex]x_{1}=x_{o}+v_{ox}t_{1}=67.0m\\0+4.50v_{o}Cos\alpha =67.0m\\v_{o}Cos\alpha =14.99\\v_{o}=14.99/Cos\alpha.....(1) \\and\\y_{1}=y_{o}+v_{oy}t_{1}+(1/2)a_{oy}t_{1}^{2} =0m\\ 1+4.50v_{o}Sin\alpha+(-9.8/2)(4.5)^{2}=0\\ v_{o}Sin\alpha=21.828.....(2)[/tex]
Put the value of v₀ from equation (1) to equation (2)
So
[tex]\frac{14.99}{Cos\alpha }(Sin\alpha ) =21.828\\as\\tan\alpha =Sin\alpha /Cos\alpha \\So\\14.99tan\alpha =21.828\\tan\alpha =21.828/14.99\\\alpha =tan^{-1}(21.828/14.99) \\\alpha =55.52^{o}[/tex]
Put that angle in equation (1) or equation (2) to find the initial velocity
So from equation (1)
[tex]v_{o}=(\frac{14.99}{Cos\alpha } ) \\v_{o}=(\frac{14.99}{Cos(55.52) } ) \\v_{o}=26.48m/s[/tex]