contestada

A spherical snowball is melting in such a manner that its radius is changing at a constant rate, decreasing from 25 cm to 16 cm in 30 minutes. At what rate, in cm3 per minute, is the volume of the snowball changing at the instant the radius is 9 cm?

Respuesta :

Answer:

[tex]\frac{dV}{dt}=-475.0088\ cm.min^{-1}[/tex]

Explanation:

Given:

initial radius of the snowball, [tex]r_i=25\ cm[/tex]

final radius of the snowball, [tex]r_f=16\ cm[/tex]

time taken for the change, [tex]t=30\ min[/tex]

Now the rate of the change in radius of the snowball:

[tex]\frac{dr}{dt} =\frac{r_f-r_i}{t}[/tex]

[tex]\frac{dr}{dt}=\frac{16-30}{30}[/tex]

[tex]\frac{dr}{dt}=-\frac{7}{15}\ cm.min^{-1}[/tex] ................(1)

As we know that the volume of sphere:

[tex]V=\frac{4}{3}\times \pi.r^3[/tex]

Now differentiating Volume equation:

[tex]\frac{dV}{dt}=\frac{4}{3}\pi\times 3r^2\times (\frac{dr}{dt})[/tex] ...........................(2)

Now when the radius of the sphere is 9 cm:

[tex]\frac{dV}{dt}=\frac{4}{3}\pi\times 3\times9^2\times (-\frac{7}{15})[/tex]

[tex]\frac{dV}{dt}=-475.0088\ cm.min^{-1}[/tex] is the rate of change of volume when the radius is 9 cm.

The volume of the snowball is changing at a rate of -305.208 cm³/min the instant the radius is 9 cm.

According to the question, the rate of change of radius with time can be given by:

[tex]\frac{dr}{dt}=\frac{\Delta r}{t}[/tex]

where

Δr = final radius - initial radius = 16 - 25 = -9cm

and t = 30 minutes.

So,

[tex]\frac{dr}{dt}=-\frac{9}{30}= -\frac{3}{10} cm/min[/tex]

Now, the volume of the sphere is given by:

[tex]V=\frac{4}{3}\pi r^3[/tex]

where r = 9 cm is the radius of the sphere at the given moment

Taking time derivative of volume to calculate the rate of change of volume with time, we get:

[tex]\frac{dV}{dt}=\frac{4}{3}\pi\times3r^2\times\frac{dr}{dt}\\\\=4\times3.14\times 9^2\times(-\frac{3}{10})\\ \\\frac{dV}{dt}=-305.208cm^3/min[/tex] is the rate of change of volume when the radius is 9 cm.

Learn more:

https://brainly.com/question/16924154?referrer=searchResults