a particle moves with acceleration a(t) m/s^2 along an s-axis and has velocity vo m/s at time t=0. find the displacement and the distance traveled by the particle during the time interval

Respuesta :

Answer:

The displacement and distance is 22 m and 20.09 m.

Explanation:

Suppose, a(t)=11

v₀=-1 ; 0<t<2.....these are meant to be less than or equal to symbols

Given that,

Acceleration = 11 m/s²

We need to calculate the displacement

Using equation of velocity

[tex]\dfrac{dv}{dt}=11[/tex]

[tex]dv=11dt[/tex]

On integration

[tex]\int_{v_{0}}^{v}{dv}=\int_{0}^{t}{11dt}[/tex]

[tex]v-v_{0}=11t[/tex]

[tex]v=v_{0}+11t[/tex]

Put the value of v₀

[tex]v=-1+11t[/tex]

[tex]\dfrac{dx}{dt}=-1+11t[/tex]

[tex]dx=(-1+11t)dt[/tex]

[tex]\int_{x_{i}}^{x_{f}}{dx}=\int_{0}^{t}{(-1+11t)dt}[/tex]

[tex]x_{f}-x_{i}=(\dfrac{11t^2}{2})_{0}^{2}[/tex]

[tex]x_{f}-x_{i}=\dfrac{11}{2}\times4[/tex]

[tex]x_{f}-x_{i}=22\ m[/tex]

The displacement is 22 m.

We need to calculate the distance

Using formula of distance

[tex]s=\int_{0}^{2}{|v|dt}[/tex]

[tex]s=\int_{0}^{\frac{1}{11}}{(-1+11t)dt}+\int_{\frac{1}{11}}^{2}{(-1+11t)dt}[/tex]

[tex]s=(t-\dfrac{11t^2}{2})_{0}^{\frac{1}{11}}+(-t+\dfrac{11t^2}{2})_{\frac{1}{11}}^{2}}[/tex]

[tex]s=\dfrac{1}{11}-\dfrac{1}{22}-2+22+\dfrac{1}{11}-\dfrac{1}{22}[/tex]

[tex]s=22.09\ m[/tex]

Hence, The displacement and distance is 22 m and 20.09 m.

The displacement of the particle is 20m

Calculating the displacement:

Given that the acceleration is:

a(t) = 11 m/s²

we know that acceleration:

a(t) = dv/dt

dv = a(t)dt

[tex]\int\limits^v_{v_0} {} \, dv=\int\limits^t_0 {a} \, dt[/tex]

[tex]v-v_0=at[/tex]

where v₀ is the initial velocity = -1 m/s,

so,

v = 11t - 1 m/s

Now,

v = dx/dt

where x is the displacement

dx = vdt

[tex]\int\limits^{}_{} {x} \, dx =\int\limits^2_0 {v} \, dt\\\\x= \int\limits^2_0 ({11t-1}) \, dt\\\\x=[\frac{11t^2}{2}-t]_0^2\\\\[/tex]

x = 20m

Learn more about equations of motion:

https://brainly.com/question/5955789?referrer=searchResults