Answer : The amount of heat required is, 82.8 cal
Explanation :
Formula used :
[tex]q=m\times c\times (T_{final}-T_{initial})[/tex]
where,
q = heat required = ?
m = mass of copper = 9 g
c = specific heat of copper = [tex]0.092cal/g^oC[/tex]
[tex]T_{final}[/tex] = final temperature = [tex]100^oC[/tex]
[tex]T_{initial}[/tex] = initial temperature = [tex]0^oC[/tex]
Now put all the given values in the above formula, we get:
[tex]q=9g\times 0.092cal/g^oC\times (100-0)^oC[/tex]
[tex]q=82.8cal[/tex]
Thus, the amount of heat required is, 82.8 cal