Respuesta :
Answer:
a) [tex] s^2 = \frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}[/tex]
And if we replace we got:
[tex]s^2 =\frac{(-13.625)^2 +(0.375)^2 +(-0.625)^2 +(12.375)^2 +(-2.625)^2 +(-3.625)^2 + (2.375)^2 +(5.375)^2}{8-1} = 56.268[/tex]
And the sample deviation is just the square root of the variance:
[tex] s = \sqrt{56.268}= 7.501[/tex]
b) [tex] \sigma^2 = \frac{\sum_{i=1}^n (X_i -\bar X)^2}{N}[/tex]
And if we replace we got:
[tex]\sigma^2 =\frac{(-13.625)^2 +(0.375)^2 +(-0.625)^2 +(12.375)^2 +(-2.625)^2 +(-3.625)^2 + (2.375)^2 +(5.375)^2}{8} = 49.234[/tex]
And the deviation would be:
[tex] \sigma = \sqrt{49.234}= 7.018[/tex]
c) 8, 94, 93, 106, 91, 90, 96, 99
For this case the new mean would be:
[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}= 84.625[/tex]
The new sample variance would be:
[tex]s^2 =\frac{(-76.625)^2 +(9.375)^2 +(8.375)^2 +(21.375)^2 +(6.375)^2 +(5.375)^2 + (11.375)^2 +(14.375)^2}{8-1} = 984.554[/tex]
And the new deviation would be:
[tex] s = \sqrt{984.554}=31.378[/tex]
Step-by-step explanation:
For this case we have the following data given:
80, 94, 93, 106, 91, 90, 96, 99
The mean calculated from the following formula is:
[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}= 93.625[/tex]
And the deviations from the mean of the data are:
–13.625, 0.375, –0.625, 12.375, –2.625, –3.625, 2.375, 5.375
Part a
The sample variance is given by the following formula:
[tex] s^2 = \frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}[/tex]
And if we replace we got:
[tex]s^2 =\frac{(-13.625)^2 +(0.375)^2 +(-0.625)^2 +(12.375)^2 +(-2.625)^2 +(-3.625)^2 + (2.375)^2 +(5.375)^2}{8-1} = 56.268[/tex]
And the sample deviation is just the square root of the variance:
[tex] s = \sqrt{56.268}= 7.501[/tex]
Part b
Is the data given comes from a population data then the variance is calculaded as:
[tex] \sigma^2 = \frac{\sum_{i=1}^n (X_i -\bar X)^2}{N}[/tex]
And if we replace we got:
[tex]\sigma^2 =\frac{(-13.625)^2 +(0.375)^2 +(-0.625)^2 +(12.375)^2 +(-2.625)^2 +(-3.625)^2 + (2.375)^2 +(5.375)^2}{8} = 49.234[/tex]
And the deviation would be:
[tex] \sigma = \sqrt{49.234}= 7.018[/tex]
Part c
For this case we have this new data:
8, 94, 93, 106, 91, 90, 96, 99
For this case the new mean would be:
[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}= 84.625[/tex]
The new sample variance would be:
[tex]s^2 =\frac{(-76.625)^2 +(9.375)^2 +(8.375)^2 +(21.375)^2 +(6.375)^2 +(5.375)^2 + (11.375)^2 +(14.375)^2}{8-1} = 984.554[/tex]
And the new deviation would be:
[tex] s = \sqrt{984.554}=31.378[/tex]